

Easy-to-Clean Surfaces and the Underlying Nanoscale Materials

Fred Klaessig 25 September 2007

Macroscopic Effects with Nanoscale Surfaces

Increasing attention is being given to surfaces that

- are nanoscale thick coatings, or
- macroscopic coatings with controlled roughness at the nanoscale, or
- macroscopic coatings that uniformly distribute and fix photocatalytically active particles of a size to optimize light scattering

These surfaces may have environmentally desirable characteristics known as

- Easy-to-Clean;
- Lotus Effect®
- Self-Cleaning

Examples of each are given along with limitations

The Photo-catalytic Process

Photon absorption;

band promotion;

potential gaps formed.

In the presence of H_2O/O_2 :

hydroxyl radicals formation;

oxidation/reduction (OH⁻);

 destruction of the organic compounds.

UV Light **Conduction Band** Valance Band **Oxidant holes**

Environmental Friendly Applications

Highway wall painted with Titanium Dioxide to help with the elimination of gases emitted by vehicles such as (NO_x) Osaka, 1999

2. Indoor air purification by decomposing odors and ammonia.

Environmental Friendly Applications

Provision of drinkable water for rural populations. This project was initiated on 2002 in six Latin American Countries including Brazil.

Treating industrial waste water, for example waste water containing dyes

Self-Cleaning Building Coatings

Easy-to-Clean Surface Films

Protectosil® AntiGraffiti and Traditional OCTEO

Date | Title of Presentation

Contact Angles of Various Liquids on Protectosil® Treated Glass

Abrasion Test on Glass with Abrasive Pad/ Aluminium Silicate Slurry

Contact Angle θ [°]

Number of Cycles

Simultaneously Oleophobic and Hydrophobic Surface

Unprotected

Protected

Durable Film After Nine Applications

Lotus Effect® Films as Self - Cleaning Surfaces

Lotus-Effect® Films Effectng Self-Cleaning with Rainwater

SEM Powder Coated Surfaces with and without Lotus Effect® Films

Summary of Formulating with Nanostructured Particles

The Lotus-Effect® film is ineffective in the presence of

- Non-polar liquids such as cosmetic oils, solvents,
- Media containing surfactants
- Surface matting will occur when coating is applied

Thin coating, <10 microns

Particles need to protrude out of the coating surface to create a highly irregular surface at the nanoscale, which is also hydrophobic.

- Deposit a low surface energy layer, so dirt and water droplets do not adhere.
- Any hydrophilic points on surface will attract water and contact angle will not exceed 140 degrees.

- 1. There are multiple approaches for controlling surface attributes at the nanoscale
 - Contact angle
 - Surface roughness plus contact angle
 - Catalytic activity
- 2. Each has its advantages and disadvantages depending on application
 - Durability: most durable requires deliberate washing and with detergents
 - Amount of "dirt" may overwhelm rain as motive force
 - Light Scattering (needs access to light)
- 3. One challenge remains uniformally applying a nanoscale effect using standard industrial technology

